Recurrent construction of q-boson realizations of quantum matrix element algebras of quantum group $\mathrm{GL}(\mathrm{n})_{q}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 265889
(http://iopscience.iop.org/0305-4470/26/21/027)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:59

Please note that terms and conditions apply.

Recurrent construction of \boldsymbol{q}-boson realizations of quantum matrix element algebras of quantum group $\mathbf{G L}(\boldsymbol{n})_{q}$

Hong-Chen Fu ${ }^{\ddagger} \ddagger$ and Mo-Lin Ge \dagger
\dagger Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People's Republic of China
\ddagger Department of Physiss, Northeast Normal University, Changchun 130024, Jilin Province, People's Republic of China

Abstract

The q-boson realizations of the quantum matrix element algebra $A(n)_{q}$ of the, quantum group $\mathrm{GL}(n)_{q}$ are recurrently constructed. Generators of $A(n)_{q}$ are expressed as $n-1$ independent q-boson operators and the generators of $A(n-1)_{q}$.

Quantum groups are the mathematical structure specified from quantum R-matrix satisfying the quantum Yang-Baxter equations through the FRT procedure [1, 2]. It can also be explained as a transformation group on a quantum plane [3]. The quantum group $G L(n)_{q}[4]$ is a set of matrices M, with non-commuting elements $m_{i j}$ satisfying

$$
\begin{array}{lll}
m_{i j} m_{i k}=q^{-1} m_{i k} m_{i j} \quad j<k & \\
m_{i j} m_{k j}=q^{-1} m_{k j} m_{i j} \quad i<k & i<k \text { and } j>l \\
m_{i j} m_{k l}=m_{k l} m_{i j} & \\
m_{i j} m_{k l}=m_{k l} m_{i j}+\left(q^{-1}-q\right) m_{i j} m_{k j} \quad i<k \text { and } j<l \tag{1}
\end{array}
$$

and with the quantum determinant $D_{q}(M)$

$$
\begin{equation*}
D_{q}(M)=\sum_{s \in \mathrm{~S}_{n}^{-}}(-q)^{-l(s)} m_{1 \mathrm{~s}_{1}} m_{2 s_{2}} \ldots m_{m s_{n}} \tag{2}
\end{equation*}
$$

where S_{n} is symmetric group and $l(s)$ is the minimal number of permutations in s, not vanishing. The quantum matrix element algebra $A(n)_{q}$ of $G L(n)_{q}$ is an associative algebra over \mathbb{C} generated by $m_{i j}$ satisfying relations (1).

Using their Heisenberg-Weyl relation realizations, Florator [5], Weyers [6], and Fhakrabarti et al [7] studied the representations of $A(n)_{q}$. In particular, in a previous paper [8], the authors revealed the structure of $A(n)_{q}$ and defined their Verma modules, and then, on this basis gave a general method for constructing q-boson realizations. In paper [9], the diagonal basis for the Verma module was constructed.

Generalizing our procedure proposed in [11], Burdik et al gave recurrent q-boson realizations of quantum enveloping algebra $U_{q}(s l(n+1, \mathbb{C}))$ [10]. This paper is devoted to the recurrent construction of a q-boson realization of $A(n)_{q}$.

Here, \mathbb{C} and Z^{+}are the field of complex numbers and the set of non-negative integers, respectively. As usual we use abbreviation $[x]=\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right)$.
(1) First we recall the structure of $A(n)_{q}$ and its Verma module. The set $\left\{K_{i}=m_{n+1-i \mid} \mid 1 \leqslant i \leqslant n\right\}$ generates a maximal commutative subalgebra $\mathscr{H}(n)_{q}$, which is
called the Cartan subalgebra. Elements $m_{i j}(j>n+1-i)$ and $m_{i j}(j<n+1-i)$ are defined as the raising and lowering generators, respectively. For a raising generator $m_{i j}(j>n+1-i)$ there exists a lowering generator $m_{n+1-j n+1-i}$ such that

$$
\begin{equation*}
\left[m_{i i}, m_{n+1-j n+1-i}\right]=-\left(q^{-1}-q\right) K_{j} K_{n+1-i} \in \mathscr{H}(n)_{q} \quad j>n+1-i . \tag{3}
\end{equation*}
$$

So we say that $\left\{m_{i j}, m_{n+1-j n+1-i}\right\}(j>n+1-i)$ is a pair which is similar to the pair $\left\{x_{a}, y_{a}\right\}$ of raising and lowering generators of Lie algebras corresponding to a root α.

The Verma module of $A(n)_{q}$ is defined as $\mathscr{V}(n)_{q} \equiv A(n)_{q} \cdot \boldsymbol{v}_{0}$, where \boldsymbol{v}_{0} is the maximal vector satisfying

$$
\begin{equation*}
m_{i j} v_{0}=0 \quad(j>n+1-i) \quad K_{i} v_{0}=\lambda_{i} v_{0} \quad(1 \leqslant i \leqslant n) . \tag{4}
\end{equation*}
$$

It is obvious that $\mathscr{V}(n)_{q}$ is spanned by

$$
\begin{equation*}
\mathscr{V}(n)_{q}:\left\{X\left(k_{i j}\right) \equiv \prod_{i j}^{\prime}\left(m_{i j}\right)^{k_{i j}} \cdot v_{0} \mid k_{i j} \in Z^{+}, j<n+1-i\right\} \tag{5}
\end{equation*}
$$

where the notation ' means that Π is an ordered product. Then by making use of the procedure we can obtain a q-boson realization of $A(n)_{q}$ corresponding to the Verma representation (for detail see [11]).
(2) Now we turn to the recurrent construction of the q-boson realization of $A(n)_{q}$. Dropping the first row and the nth column from $M \in \operatorname{GL}(n)_{q}$, we obtain an element of GL $(n-1)_{q}$. It is worth noting that one has different ways to obtain an element of GL($n-1)_{q}$ from GL $(n)_{q}$. However, our choice makes the Cartan, raising, and lowering generators of $\mathrm{GL}(n-1)_{q}$ remain the Cartan, raising and lowering operators of $\mathrm{GL}(n)_{q}$, respectively. The matrix elements $m_{i j}(2 \leqslant i \leqslant n, 1 \leqslant j \leqslant n-1)$ of $\mathrm{GL}(n-1)_{q}$ generate a subalgebra of $A(n)_{q}$, which is obviously the $A(n-1)_{q}$.

Let $\bar{A}(n-1)_{q}$ be a subalgebra of $A(n)_{q}$ generated by $A(n-1)_{q}$, the elements $m_{i n}$ ($2 \leqslant i \leqslant n$) and K_{n}. The left regular representation ρ_{n-1} of $A(n-1)_{q}$ can be extended to a representation $\bar{\rho}_{n-1}$ of $\bar{A}(n-1)_{q}$ by

$$
\bar{\rho}_{n-1}(x)=\left\{\begin{array}{lll}
\lambda_{n} & \text { for } x=K_{n} & \lambda_{n} \in \mathbb{C} \tag{6}\\
\rho_{n-1}(x) & \text { for } x \in A(n-1)_{q} \\
0 & \text { for } x=m_{i n} \quad(2 \leqslant i \leqslant n) .
\end{array}\right.
$$

It is obvious that $A(n)_{q} \cdot\left(\bar{A}(n-1)_{q} \otimes z-1 \otimes \bar{\rho}_{n-1}\left(\bar{A}(n-1)_{q}\right) z\right), \forall z \in A(n-1)_{q}$, is an invariant subspace of the left representation ρ_{n} of $A(n)_{q}$. We will denote by τ_{n} the quotient representation of ρ_{n} with respect to this invariant subspace.

It is easy to see that the representative space $V\left(\lambda_{n}\right)$ of τ_{n} is spanned by

$$
\begin{equation*}
\left|k_{t}>\otimes w \equiv\right| k_{1}, k_{2}, \ldots, k_{n-1}>\otimes w \equiv m_{11}^{k_{1}} m_{12}^{k_{2}} \ldots m_{1 n}^{k_{n-1}-1} \otimes w \quad k_{t} \in Z^{+} \tag{7}
\end{equation*}
$$

where $w \in A(n-1)_{q}$.
By making use of the following relations $(2 \leqslant i \leqslant n)$

$$
\begin{aligned}
& m_{i j} m_{1 t}^{k_{1}}= \begin{cases}q^{k_{t}} m_{1 \mathrm{l}}^{k_{1}} m_{i j} & \text { for } j=t \\
m_{1}^{k_{1}^{k}} m_{i j} & \text { for } j<t \\
m_{1!}^{k} m_{i j}-q^{-1}\left(1-q^{2 k_{t}}\right) m_{1 i}^{k_{2}-1} m_{i i} m_{1 j} . & \text { for } j>t\end{cases} \\
& m_{1 j} m_{1 t}^{k_{t}}= \begin{cases}q^{-k_{t}} m_{1 t}^{k_{2}} m_{1 j} & \text { for } j<t \\
m_{1 t}^{k_{t}} m_{1 j} & \text { for } j=t \\
q^{k_{t}} m_{1 i}^{k_{i}} m_{1 j} & \text { for } j>t\end{cases}
\end{aligned}
$$

we can calculate that

$$
\begin{align*}
& \tau_{n}\left(m_{1 j}\right)\left(\mid k_{t}>\otimes w\right)=q^{\sum i=1 k_{k}}\left(\mid k_{t}+\delta_{t j}>\otimes w\right) \quad(1 \leqslant j \leqslant n-1) \\
& \tau_{n}\left(m_{1 n}\right)\left(\mid k_{t}>\otimes w\right)=q^{\Sigma \sum-1 k_{i} k_{t}} \lambda_{n}\left(\mid k_{t}>\otimes w\right) . \\
& \tau_{n}\left(m_{i n}\right)\left(\mid k_{t}>\otimes w\right)=-q^{-1} \sum_{r=1}^{n-1} q^{\Lambda_{n-r}(r) \Sigma \sum_{r=1}^{k-1} k^{k}\left(1-q^{2 k_{r}}\right) \lambda_{n}\left(\mid k_{t}-\delta_{r r}>\otimes \rho_{n-1}\left(m_{i r} w\right)\right)} \\
& (2 \leqslant i \leqslant n) \\
& \tau_{n}\left(m_{i j}\right)\left(\mid k_{t}>\otimes w\right)=q^{k_{r}}\left(\mid k_{t}>\otimes \rho_{n-1}\left(m_{i j} w\right)\right)-\sum_{r=1}^{j-1} q^{-1} q^{\Delta_{t-1}(r) \sum_{t=1}^{l-1} k^{k}}\left(1-q^{2 k_{r}}\right) \\
& \times\left(\mid k_{t}-\delta_{t r}+\delta_{t j}>\otimes \rho_{n-1}\left(m_{i r} w\right)\right) \\
& (2 \leqslant i \leqslant n, 2 \leqslant j \leqslant n-1) \\
& \tau_{n}\left(m_{i 1}\right)\left(\mid k_{t}>\otimes w\right)=q^{k_{1}}\left(\mid k_{t}>\otimes \rho_{n-1}\left(m_{i 1} w\right)\right) \quad(2 \leqslant i \leqslant n) \tag{8}
\end{align*}
$$

where $\Delta_{j-1}(r)=1-\delta_{j-1 r}$. To obtain the recurrent q-boson realization of $A(n)_{q}$, we consider the 'generalized' q-Fock representation of q-deformed Heisenberg-Weyl algebras $\mathscr{W}(n-1)_{q}$ of $n-1$ independent q-bosons on $V\left(\lambda_{n}\right)$

$$
\begin{gather*}
b_{i}^{+}\left(\mid k_{t}>\otimes w^{\prime}\right)=\mid k_{t}+\delta_{r i}>\otimes w \\
b_{i}\left(\mid k_{t}>\otimes w\right)=\left[k_{i}\right]\left(\mid k_{t}-\delta_{n}>\otimes w\right) \\
q^{ \pm N_{t}}\left(\mid k_{t}>\otimes w\right)=q^{ \pm k_{t}}\left(\mid k_{t}>\otimes w\right) \tag{9}
\end{gather*}
$$

It is easy to check that $b_{i}^{+}, b_{i}, q^{ \pm N_{i}}(1 \leqslant i \leqslant n-1)$ satisfy the following defining relations of $\mathcal{W}(n-1)_{q}[12]$

$$
\begin{align*}
& b_{i} b_{i}^{+}-q^{\mp 1} b_{i}^{+} b_{i}=q^{ \pm N_{i}} \\
& q^{N_{i}} b_{i}^{+} q^{-N_{i}}=q b_{i}^{+} \quad q^{N_{i}} b_{i} q^{-N_{i}}=q^{-1} b_{i} \\
& {\left[x_{i}, x_{j}\right]=0 \quad\left(i \neq j, x_{i}=b_{i}^{+}, b_{i}, q^{ \pm N_{i}}\right) .} \tag{10}
\end{align*}
$$

Then from equations (8) it follows that

$$
\begin{align*}
& m_{1 j}=q^{\operatorname{Mij}=1 N_{r} b_{j}^{+}} \quad(1 \leqslant j \leqslant n-1), \\
& m_{1 n}=q^{\sum n-1 N_{t}} \lambda_{n} \\
& m_{r n}=q^{-1} \sum_{r=1}^{n-1} q^{\sum n=1 N_{r} \lambda_{n} b_{r} \rho_{n-1}\left(m_{r r}\right) \quad(2 \leqslant i \leqslant n), ~(2)} \\
& m_{i j}=q^{N_{j}} \rho_{n-1}\left(m_{i j}\right)+q^{-1} \sum_{r=1}^{j-1} q^{\operatorname{sim}_{i j} N_{i} b_{r}} b_{j}^{+} \rho_{n-1}\left(m_{l r}\right) \quad(2 \leqslant i \leqslant n, 2 \leqslant j \leqslant n-1) \\
& m_{i 1}=q^{N_{1}} \rho_{n-1}\left(m_{i 1}\right) \quad(2 \leq i \leq n) \tag{11}
\end{align*}
$$

which is the desired recurrent q-boson realization of $A(n)_{q}$. We conclude that generators of $A(n)_{q}$ are expressed as $n-1$ independent q-boson operators and the generators of $A(n-1)_{q}$.
(3) As a matter of fact, ρ_{n-1} can be chosen as not only the left regular representation of $A(n)_{q}$, but also representations of $A(n-1)_{q}$ induced by ρ_{n-1} on some quotient spaces of $A(n-1)_{q}$ with respect to some invariant subspaces. Extension to $\bar{\rho}_{n-1}$ is in the same way as in equation (6). In particular, if we choose ρ_{n-1} to be the Verma representation, or equivalently, the q-boson realizations corresponding to the Verma representation, the $V\left(\lambda_{n}\right)$ is just the Verma module of $A(n)_{q}$. In this way we shall obtain a pure q-boson realiztion of $A(n)_{q}$ corresponding to the Verma representation of $A(n)_{q}$. In this case the central element $D_{q}(M)$ will take a constant.
(4) In paper [9], we constructed the so-called diagonal basis for Verma module of $A(n)_{q}$, on which the Cartan generators K_{i} are diagonal. Suppose that we have been given the diagonal basis of $A(n-1)_{q}$. Then, adding the following elements

$$
\begin{align*}
& \Delta_{1}^{n}=m_{1 n-1} \\
& \Delta_{2}^{n}=D_{q}\left[\begin{array}{lll}
m_{1 n-2} & m_{1 n-1} \\
m_{2 n-2} & m_{2 n-1}
\end{array}\right] \tag{12}\\
& \Delta_{n-1}^{n}=D_{q}\left[\begin{array}{llll}
m_{11} & m_{12} & \ldots & m_{1 n-1} \\
m_{21} & m_{22} & \ldots & m_{2 n-1} \\
\ldots & \ldots & \ldots & \ldots \\
m_{n-11} & m_{n-12} & \ldots & m_{n-1 n-1}
\end{array}\right]
\end{align*}
$$

instead of $m_{1 i}$, we obtain a diagonal basis for $A(n)_{q}$. In terms of these elements, $V\left(\lambda_{n}\right)$ can also be spanned by

$$
\begin{equation*}
\left(\Delta_{1}^{n}\right)^{k_{1}}\left(\Delta_{2}^{n}\right)^{k_{2}} \ldots\left(\Delta_{1}^{n}\right)^{k_{n}} \otimes w \tag{13}
\end{equation*}
$$

Then $\tau_{n}\left(K_{i}\right)$ will be diagonal on these vectors if $\rho_{n-1}\left(K_{i}\right)$ is diagonal. However, in this case, it is difficult to explicitly calculate the recurrent formulae because the commutation relations between $m_{i j}$ and Δ_{t}^{n} are very complicated.

Acknowledgment

This work was supported in part by the National Science Foundation of China.

References

[1] Woronowicz S L 1987 Commun. Math. Phys. 111 613; 1987 Publ. RIMS 23117
[2] Takhtajan L A 1989 Introduction To Quantum Groups and Integrable Massive Models of Quantum Field Theory ed M L Ge and B H Zhao (Singapore: World Scientific)
[3] Manin Yu I 1987 Quantum groups and non-commutative geometry Centre des Recherches Mathematiques, Montreal University report
[4] Corrigan E, Fairlie D B, Fletcher P and Sasaki R 1990 J. Math. Phys. 31776
[5] Floratos E G 1990 Phys. Lett. 233B 395
[6] Weyers J 1990 Phys. Lett. 240B 396
[7] Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 241709
[8] Fu H C and Ge M L 1992 J. Phys. A: Math. Gen. 25 L389
[9] Fu H C and Ge M L 1992 Chinese Science Bulletin 371362 (in Chinese)
[10] Burdik C, Cerny L and Navratil O 1992 The q-boson realizations of the quantum group $U_{q}(s l(n+1, C))$ Preprint
[11] Fu H C and Ge M L 1992 J. Math. Phys. 33427
[12] Biedènharn L C 1989 J. Phys. A: Math. Gen. 22 L873
Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581

